
Personal Billboard
Mission 7

Pre-Mission Preparation

Have you ever made a sign to post on a door
or wall? How about a name badge to wear? Or
a cap or t-shirt with a message or slogan on it?

● If you could show what you like or your mood by

displaying something, what would you display?

(example: a color, an image, a slogan, etc.)

● What type of clothing would you display your

message on?

Mission 7: Personal Billboard
In this project you'll use the CodeX display
and buttons to make a billboard that shows
others how you're feeling, a fun picture, or a
short message.

On battery power, you could make the
CodeX into a wearable electronic
badge or a portable sign for a wall or
desk!

Objective #1: Image selector

The CodeX has several built-in images. You

have used them since Mission 2.

You learned about using buttons for input in

Mission 6.

● Start this project by writing code that will:
○ Display the HAPPY face when BTN_L is pressed

○ Display the SAD face when BTN_R is pressed

Mission Activity #1

DO THIS:

● Start a new file named

Billboard
● Import codex

● Use a while True: loop

● Show pics.HAPPY if BTN_L was pressed

● Show pics.SAD if BTN_R was pressed
○ Use CodeTrek if you need help

Objective #2: Select more images

You will use the CodeX to display your mood, so you need

more than two pictures!

● You will still use the LEFT and RIGHT buttons to scroll

through the pictures

● So you need some way to keep track of which picture to

display

● You will use the variable choice to keep track of which

image to display, and update choice with the buttons

Objective #2: Select more images

You can use a number to keep

track of the images like this:

A number like this is called an

index. It is like using your finger

to point to the image!

Objective #2: Select more images

To compare a number to a specific value,

use ==

● choice == 1

Use this comparison in an if statement to

display an image

● Use an if statement for each picture

● You will have 4 additional if statements

● Use HAPPY, SAD, and two more pictures

Concept:
Comparison operator

= assigns a value
count = 1

== compares two
values to see if they
are the same
if choice == 1

Comparison
operators:
Greater than >
Less than <
Greater than or equal to >=
Less than or equal to <=
Equal to ==
Not equal to !=

Objective #2: Select more images

Built-in images you can use:

Mission Activity #2

DO THIS:

● Go to your Mission Log and answer the questions

about index and comparison operators

Mission Activity #2

DO THIS:

● Define the variable choice and assign it the value 0
● Write an if statement to display HAPPY (if choice == 0:)
● Write an if statement to display SAD (if choice == 1:)
● Write an if statement to display another pic (if choice == 2:)
● Write an if statement to display another pic (if choice == 3:)
● Change the if buttons.was_pressed(BTN_R) code to

increment choice (choice = choice + 1)

Try to do the code on your own, and then check your work with
the next slide.

Mission Activity #2

Your code should
look like this:

The last two pictures will be
the ones you chose.

BTN_L isn’t changed

BTN_R increments choice

Objective #3: Scroll both directions

In Mission 6, you learned about increment and decrement

● Increment:
○ Increase the value of a variable by a set amount
○ Example: num = num + 1

● Decrement:
○ Decrease the value of a variable by a set amount
○ Example: num = num - 1

You will change the code for BTN_L to decrement choice so
you can scroll the opposite way.

Objective #3: Scroll both directions

Another awesome feature of the debugger is that you can
watch your variables and track their values while the code is
running.
● Start the debugger
● Open the console panel
● Watch the variables as you

step through the code

Mission Activity #3

DO THIS:

● Go to your Mission Log and review “increment” and

“decrement” from Mission 6

Mission Activity #3
DO THIS:

● Change the code for BTN_L to decrement choice by 1
● Start the debugger
● Open the console panel
● Use the Step In button to run the code.

○ Click several times, and then press BTN_R. Check the value
of choice.

○ Click several more times, and then press either BTN_R or
BTN_L. Check the value of choice.

○ Continue as long as you want until you understand the code.
○ Then STOP the code.

Billboard checkpoint
During this mission you have learned to
use an index, review increment and
decrement the counter, and used the
debugger.

● Answer the 3 quiz questions about
the Objectives 1-3

CODEX
QUIZ

Objective #4: Wrap around

You probably noticed that if you keep pressing

BTN_R, it stops at the last image.

● The value of choice keeps increasing, but

the image stays the same.

● Also, pressing BTN_L many times keeps the

first image on the screen.

● The value of choice decreases, but the

image stays the same.

Objective #4: Wrap around

● There are no if statements for

choice == 4 or choice == -1
● So the last image displayed

remains on the screen

Can you improve the program and

avoid this problem?

Objective #4: Wrap around

Instead of adding more images or
if statements, make the value of
choice wrap-around to the first
value.

● Use an if statement to know
when to wrap around.

● Use a comparison operator.
● You can have an if statement

inside an if statement -- just be
careful with the indenting

NOTE: you are
assigning a value, so
use = and not ==

Objective #4: Wrap around
The second if statement causes the
value of choice to wrap-around, and
start over.

● The last index is 3
● The first index is 0

What will the if statement look like to
wrap-around BTN_L?

● The value of choice will need to be
the LAST index if less than 0.

Mission Activity #4

DO THIS:

● Go to your Mission Log and write down what you

think the code should look like to wrap-around the

value of choice in BTN_L

Mission Activity #4

Modify your code

DO THIS:

● Add an if statement to BTN_R so

the value of choice wraps around

● Add an if statement to BTN_L so the

value of choice wraps around

● Test your code

● Then stop the code

Objective #5: Image list

Four pictures is nice, but what if you want to add more?

That is a lot of typing!

● Every new image needs an if statement

● Your code can get very long very quickly!

Instead, you can make a list!

Mission Activity #5
DO THIS:

● Click on in the instructions panel

● Go to your Mission Log and answer the questions about list

Objective #5: Image list

● A list is a type!

● Now you know six data types:
○ Integer

○ CodeX image

○ String

○ Boolean

○ Float

○ List

Objective #5: Image list

● The order of the items in the list

is important

● Each item has an index (number)

assigned

● The first index is always 0

● The last index is always 1 less

than the number of items

INDEX ITEM

0 HAPPY

1 SAD

2 SURPRISED

3 ASLEEP

4 TIARA

5 PLANE

NOTE: This list has 6 items, so the
index is 0, 1, 2, 3, 4, and 5

Objective #5: Image list

Things you can do with a list:

● Create a list (use [])

my_list = [pics.HAPPY, pics.SAD, pics.SURPRISED, pics.ASLEEP, pics.TIARA]

● Access an item in the list (use [])

my_image = my_list[1]
my_image = pics.SAD

my_image = my_list[choice]
my_image = whatever image is
 at the current value
 of choice

INDEX ITEM

0 HAPPY

1 SAD

2 SURPRISED

3 ASLEEP

4 TIARA

Mission Activity #5
DO THIS:

● Add a list to your code
○ Use the same four images

● Change the code to access the
list
○ Add two lines of code to access the

list using choice for the index
○ Delete the four if statements that

displayed the images
○ Leave the if statements for BTN_L

and BTN_R

Objective #6: No magic numbers
● With four images in your list, the index numbers are

○ 0, 1, 2, 3

● You use these numbers for wrap-around

● If you added another image, the last index would be 4, not 3.

● You would have to change 3 to 4 everywhere in the code!

● These literals are called “magic numbers”

Objective #6: No magic numbers
● Magic numbers make the code harder to maintain, and harder

to read and understand.

● The magic number in this program is the last index of the list

● So …
● Use a built-in function!

This code will give the length of the list, which is the number of

items in the list.

● Remember: the last index is always one less than the

number of items

Mission Activity #6
Now you can add more images

DO THIS:

● Add another image to your list
○ A list of images is on slide 9

● Create a variable for LAST_INDEX

● Continued on next slide

You can choose
the image you
want to add

Mission Activity #6
DO THIS:

● Use the LAST_INDEX variable in the code:

List len quiz
During this mission you have learned

about lists and using an index to access its

items.

● Answer the quiz question about the

list index
CODEX

QUIZ

Objective #7: Text time!
Images are expressive … but text can say so much more!

● You can use a string variable to create a message or slogan

● Remember: a string data type uses quotation marks: “..”
○ my_message = “Meh”

○ my_message = “Having a great day”

● You also include a string message in your list
○ display.show(my_message) will display the text string

Mission Activity #7
DO THIS:

● Add a text string to your list

● OPTIONAL: Your list can look like

this to make it easier to read.

Objective #8: Green with envy

What if you're neither HAPPY nor SAD? ...and text just isn't

describing you?

● Sometimes you just need a color.

● Maybe you are GREEN with envy!

● Wouldn't it be cool to fill the display with a color?

● Try it out!

●

Mission Activity #8

DO THIS:

● Add GREEN to the list

● Run the program

● Get an error?

● Find out why in the next objective

Objective #9: Fill ‘er up

GREEN isn’t an image or a string. What type is it?

● Colors in the codex library are actually tuples!

● A tuple is like a list that can't be changed.

● CodeX color tuples have three integer values:

(red, green, blue)
● You learned about RGB values in Mission 3

● What do you think the tuple for GREEN is?

●

Mission Activity #9

DO THIS:

● Go to the Mission Log and write your

guess for the RGB tuple of GREEN

Objective #9: Fill ‘er up

display.show() doesn’t work with colors, but

display.fill() does!

● You just have to know when to use display.show()

and when to use display.fill()
● You need to check for the type
● You can use the console panel to help you

●

Mission Activity #9

DO THIS:

● Open the console panel. You can type
commands directly into the console.

● Check the type of several values:
○ type(7) -> ‘int’
○ type(1.15)
○ type(True)
○ type([1, 2, 3])

● The type is shown like this:
● Now get the type of a color

○ type((0, 255, 0))

Objective #9: Fill ‘er up

● The type of a color is ‘tuple’

● You can use this information in

your code

● If the type is ‘tuple’,

use display.fill().

Else

use display.show()

●

Mission Activity #9

DO THIS:

● Add an if statement to the

code that compares the

current my_image to a tuple.

● If it is, use display.fill().

● Else use display.show()

● Run the code. You should get

colors, text and images!

Mission Activity #9
DO THIS:
● Add more colors, text or images to

your list.
● Run the code.
● No matter how many items you have,

the code should work without making
any other changes.

● Pretty cool, Right!
● Now you can display your mood by

stopping on the color, text, or image
that represents you.

Post-Mission Reflection
● Read the “completed mission”

message and click to complete the

mission

● Complete the Mission 7 Log

Clearing your CodeX

Go to FILE -- BROWSE FILES
Select the “Clear” file and open it
Run the program to clear the CodeX

